观察是理解和研究人类行为和精神状态的重要工具。但是,编码人类行为是一项耗时,昂贵的任务,在这种任务中,可靠性可能难以实现,偏见是一种风险。机器学习(ML)方法提供了提高可靠性,降低成本并扩展行为编码以在临床和研究环境中应用的行为编码的方法。在这里,我们使用计算机愿景来得出黄金标准行为评级系统的行为代码或概念,为精神卫生专业人员提供熟悉的解释。从有或没有强迫症的儿童和青少年的临床诊断访谈视频中提取了特征。我们的计算评级与人类的专家评级相当,在负面情绪,活动水平/唤醒和焦虑方面。为了关注和积极影响概念,我们的ML等级表现合理。但是,凝视和发声的结果表明需要提高数据质量或其他数据方式。
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
We revisit a simple Learning-from-Scratch baseline for visuo-motor control that uses data augmentation and a shallow ConvNet. We find that this baseline has competitive performance with recent methods that leverage frozen visual representations trained on large-scale vision datasets.
translated by 谷歌翻译
Poor sample efficiency continues to be the primary challenge for deployment of deep Reinforcement Learning (RL) algorithms for real-world applications, and in particular for visuo-motor control. Model-based RL has the potential to be highly sample efficient by concurrently learning a world model and using synthetic rollouts for planning and policy improvement. However, in practice, sample-efficient learning with model-based RL is bottlenecked by the exploration challenge. In this work, we find that leveraging just a handful of demonstrations can dramatically improve the sample-efficiency of model-based RL. Simply appending demonstrations to the interaction dataset, however, does not suffice. We identify key ingredients for leveraging demonstrations in model learning -- policy pretraining, targeted exploration, and oversampling of demonstration data -- which forms the three phases of our model-based RL framework. We empirically study three complex visuo-motor control domains and find that our method is 150%-250% more successful in completing sparse reward tasks compared to prior approaches in the low data regime (100K interaction steps, 5 demonstrations). Code and videos are available at: https://nicklashansen.github.io/modemrl
translated by 谷歌翻译
激光雷达传感器是在未知环境中同时定位和映射(SLAM)的强大工具,但是它们产生的原始点云是密集的,计算量昂贵,并且不适合下游自治任务(例如运动计划)直接使用。为了与运动计划集成,希望大满贯管道生成轻量级的几何图表示。这样的表示也特别适合人造环境,通常可以将其视为在笛卡尔网格上建造的所谓“曼哈顿世界”。在这项工作中,我们为曼哈顿世界环境提出了一种3D激光雷达大满贯算法,该算法从点云中提取平面特征,以实现轻便,实时的定位和映射。我们的方法生成基于平面的地图,其记忆占其位置的记忆力明显少得多,并且适合于快速碰撞检查运动计划。通过利用曼哈顿世界的假设,我们靶向正交平面的提取,以生成比现有基于平面的LIDAR SLAM方法更结构化和组织的地图。我们证明了我们在高保真的AirSim模拟器以及配备有速蛋白底激光片的地面漫游车的现实实验中。在这两种情况下,我们都能够以匹配10 Hz的传感器速率的速率生成高质量的图和轨迹估计值。
translated by 谷歌翻译
光环伴形培养基中的离子气体通过热阳光阳光层(TSZ)效应在宇宙微波背景上留下烙印。来自活性银河核(AGN)和超新星的反馈会影响晕孔集成TSZ通量的测量($ y_ \ mathrm {sz} $),并导致其与光晕质量的关系($ y_ \ mathrm {sz} -mm $ )偏离病毒定理的自相似幂律预测。我们对使用骆驼,一套流体动力模拟的套件进行了全面研究,反馈处方的差异很大。我们使用两个机器学习工具(随机森林和符号回归)的组合来搜索$ y-m $关系的类似物,这对低质量的反馈过程($ m \ sillesim 10^{14} \,h^, {-1} \,m_ \ odot $);我们发现,仅替换$ y \ rightarrow y(1+m _*/m_ \ mathrm {gas})$在关系中使其非常相似。这可以用作低质量簇和星系组的强大多波长质量代理。我们的方法通常对于提高其他天体分级关系的有效性领域通常也很有用。我们还预测,$ y-m $关系的测量值可以在反馈参数的某些组合和/或排除超级新闻和AGN反馈模型的主要部分,以提供百分比的约束。艺术流体动力模拟。我们的结果对于使用即将进行的SZ调查(例如SO,CMB-S4)和Galaxy Surveys(例如Desi和Rubin)来限制Baryonic反馈的性质。最后,我们发现,$ y-m _*$的另一种关系提供了有关反馈的补充信息,而不是$ y-m $。
translated by 谷歌翻译
学习无标记数据的判别性表示是一项具有挑战性的任务。对比性的自我监督学习提供了一个框架,可以使用简单的借口任务中的相似性措施来学习有意义的表示。在这项工作中,我们为使用图像贴片上的对比度学习而无需使用明确的借口任务或任何进一步标记的微调来提出一个简单有效的框架,用于使用对比度学习进行自我监督的图像分割。完全卷积的神经网络(FCNN)以自我监督的方式进行训练,以辨别输入图像中的特征并获得置信图,从而捕获网络对同一类的对象的信念。根据对比度学习的置信图中的平均熵对正 - 和负斑进行采样。当正面斑块之间的信息分离很小时,假定会收敛,而正阴对对很大。我们评估了从多个组织病理学数据集分割核的任务,并通过相关的自我监督和监督方法显示出可比的性能。所提出的模型仅由一个具有10.8K参数的简单FCNN组成,需要大约5分钟才能收敛于高分辨率显微镜数据集,该数据集比相关的自我监督方法小的数量级以获得相似的性能。
translated by 谷歌翻译
第三人称视频的逆增强学习(IRL)研究表明,令人鼓舞的结果是消除了对机器人任务的手动奖励设计的需求。但是,大多数先前的作品仍然受到相对受限域视频领域的培训的限制。在本文中,我们认为第三人称IRL的真正潜力在于增加视频的多样性以更好地扩展。为了从不同的视频中学习奖励功能,我们建议在视频上执行图形抽象,然后在图表空间中进行时间匹配,以衡量任务进度。我们的见解是,可以通过形成图形的实体交互来描述任务,并且该图抽象可以帮助删除无关紧要的信息,例如纹理,从而产生更强大的奖励功能。我们评估了我们的方法,即Graphirl,关于X魔术中的跨体制学习,并从人类的示范中学习进行真实机器人操纵。我们对以前的方法表现出对各种视频演示的鲁棒性的显着改善,甚至比真正的机器人推动任务上的手动奖励设计获得了更好的结果。视频可从https://sateeshkumar21.github.io/graphirl获得。
translated by 谷歌翻译
某人如何分配时间对他们的健康和福祉很重要。在本文中,我们展示了如何通过优化时间使用时间来使用进化算法来促进健康和福祉。根据来自大型人群儿童队列的数据,我们设计健身功能来解释健康结果并引入可行时间计划的限制。然后,我们研究了进化算法的性能,以优化具有不同日期结构的假设儿童的四个个人健康结果的时间使用。随着四个健康结果正在争夺时间分配,我们研究如何以多目标优化问题的形式同时优化多个健康结果。我们使用进化多目标算法优化了一周的时间使用计划,并指出在不同的健康结果方面可以实现的权衡。
translated by 谷歌翻译
像人类一样自然而然地处理和保留新信息的能力是在训练神经网络时受到极大追捧的壮举。不幸的是,传统优化算法通常需要在培训时间和更新WRT期间可用的大量数据。培训过程完成后,新数据很难。实际上,当出现新数据或任务时,由于神经网络容易遭受灾难性遗忘,因此可能会丢失先前的进展。灾难性遗忘描述了当神经网络在获得新信息时完全忘记以前的知识时,这种现象。我们提出了一种新颖的培训算法,称为培训,通过解释我们利用层面相关性传播的方式,以保留神经网络在培训新数据时已经在先前任务中学习的信息。该方法在一系列基准数据集以及更复杂的数据上进行评估。我们的方法不仅成功地保留了神经网络中旧任务的知识,而且比其他最先进的解决方案更有效地进行了资源。
translated by 谷歌翻译